Discussion: 'On the Use of Minimal Parametrisations in Multivariable ARMAX Identification' by R. P. Guidorzi

نویسندگان

  • Tomas McKelvey
  • Roberto Guidorzi
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of ARARX models in presence of additive noise

The identification of dynamic processes can be performed by means of different classes of models relying on different stochastic environments to describe the misfit between the model and process observations. This paper introduces a new class of models by considering additive error terms on the observations of the input and output of ARARX models and proposes a three–step identification procedu...

متن کامل

Model Predictive Control System Design using ARMAX Identification Method for Car-following Behavior

The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...

متن کامل

On Line Identification of the First Markov Parameter of Linear Multivariable Plants (RESEARCH NOTE)

In this paper three methods for on-line identification of first markov parameter at linear multivariable plants are presented. In these methods input-output data are used far the on-line identification of the first markov parameter.

متن کامل

Optimal Errors–in–variables Filtering in the Mimo Case

Abstract: The Errors–in–Variables (EIV) stochastic environment constitutes a superset of most common stochastic environments considered, for instance, in Kalman filtering or in equation–error identification where the process input is assumed as noise–free. Errors– in–variables models assume, on the contrary, the presence of unknown additive noise also on the inputs; the associated filtering pro...

متن کامل

Modeling of Nonlinear Systems with Friction Structure Using Multivariable Taylor Series Expansion

The major aim of this article is modeling of nonlinear systems with friction structure that, thismethod is essentially extended based on taylore expansion polynomial. So in this study, thetaylore expansion was extended in the generalized form for the differential equations of the statespaceform. The proposed structure is based on multi independent variables taylore extended.According to the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Control

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1998